## LIGHT SCATTERING. XXII.*

# USE OF THE FORWARD ANGLE DISSYMMETRY METHOD FOR THE DETERMINATION OF THE PARTICLE SIZE IN SYSTEMS OF UNKNOWN CONCENTRATION 

B.SEDLÁČEK<br>Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, Prague 6

The applicability of the forward angle dissymmetry method modified for the determination of the size of spherical particles in monodisperse systems of unknown concentration has been analyzed. It has been demonstrated on samples of polystyrene latex (particle size 200 to 300 nm ), that the results obtained by this method are fairly accurate and reproducible, the measurements themselves being very simple and fast. A discussion of the course of the corresponding scattering functions (explicitly tabulated for practical purposes) and the experimental data made it possible to specify the advantages and limitations of the individual modifications of the method. Two quotients were suggested for a preliminary evaluation of the polydisperse latexes: $a$ ) ratio of the mean particle sizes established at two wavelengths, and $b$ ) ratio of the average particle sizes determined at two pairs of angles of observation - both of them for unpolarized, vertically and horizontally polarized light.

In systematical investigations of the light scattering methods suitable for the study of the properties of particles whose concentration is either unknown or difficult to determine, we have obtained good results with the so-called ratio methods ${ }^{1}$. Their advantage consists in that the results obtained are to a large extent independent of the conditions of measurement: by establishing ratios of two values of a given function (obtained at two values of the parameter), or two conjugated functions (at a given value of the parameter), elimination of most of the correction and normalization factors is achieved. In the transmission functions of the type $\tau=f(L)$ (where $\tau$ is turbidity and $L$ is the characteristic particle size), it is virtually only the wavelength that can serve as the parameter. On the contrary, in the case of the transverse methods, both the wavelength and the angle of observation or the polarization of light can be selected. The dissymmetry method is best known of all; the dissymmetry $z$ being as a rule defined by the relationship $z=i_{\theta} / i_{180-\theta}$, where $i$ is the intensity of the scattered light and $\theta$ is the angle of observation. The other two methods used, that is, "scattering ratio" (ratio of the intensities of scattered light with the primary beam polarized horizontally and vertically) and "depolarization method" (ratio of the intensities of the horizontally and vertically polarized components of the scattered light with an unpolarized primary

[^0]beam) are equivalent, as long as the system contains perfectly transparent and isotropic particles ${ }^{2}$. The individual methods described above can be combined with each other, thus increasing their applicability and accuracy, as well as the reliability of measurements.

The method investigated here is a certain analogy of the dissymmetry method, which can be applied within the range of sizes of particles whose radiation envelope has lost its symmetry, but so far has got no maxima. On overpassing the critical size (which also depends on the relative refractive index and shape of the particles), the first maximum appears on the radiation envelope; with further increase in the particle size the maximum is gradually shifted from large angles to small ones $(180 \rightarrow$ $\rightarrow 0^{\circ}$ ), which is accompanied by in appearance of further maxima and minima. For this reason, the usual dissymmetry method $\left(z=i_{45} / i_{135}\right)$ was originally replaced by its modification ( $z=i_{45} / i_{90}$ ). However, Maron and Pierce ${ }^{3}$ have shown recently that the method involving two close angles (with a difference of 10 or $15^{\circ}$ ) is clearly more advantageous; they called it the "forward angle ratio" method (FAR). We have slightly modified the FAR method with respect to the experience obtained to date with the ratio methods, and adjusted it for the determinations of the size and concentration of spherical particles in systems having an insufficiently defined composition. The applicability of the method (called here the forward angle dissymmetry method) has been verified by an analysis of its possibilities and limitations, and also by comparing the data obtained on a model system by light scattering and electron microscopy.

## EXPERIMENTAL

Samples: Polystyrene latex (Kaučuk, Kralupy n. Vlt.) served as a model system. The characteristics of the individual samples are given in Table I. The original concentrates were diluted so as to preclude virtually the danger of multiple scattering. Since an addition of pure distilled water might disturb the stability of latexes, the samples were diluted with a solution of the stabilizer supplied by the manufacturer. The relative concentration of the basic sample was regarded as equal to unity; the concentration scale was prepared by gradual dilution of samples to yield a half, a quarter, or an eighth part of the basic concentration. The diluent was purified by pressure filtration through a G 5 fritted disc; of the latex samples, only the basic one was purified, using partial sedimentation. The samples for electron microscopy were taken directly from cells used in the light scattering measurements.

Light scattering: Measurements were carried out on a Sophica apparatus at angles 30, 45, 60, 90 , and $150^{\circ}$, the wavelength being 436 and 546 nm ; the primary beam was unpolarized or polarized vertically and horizontally. For control purposes, the values of reduced intensities were also determined (against a benzene and a glass standard); since, however, it was the aim of the measurement to demonstrate the suitability of the method for the determination of the size and concentration of particles in insufficiently defined systems, only relative values are introduced each time. (The ratios of two quantities have of course an absolute validity). The data obtained were treated and evaluated on the basis of Mie's theory; to this purpose, the necessary tables and graphs were prepared (cf. ${ }^{4}$ ).

Table I
Electron Microscopic Determinations of the Particle Sizes of Polystyrene Latexes (Samples A-D)

| Sample | $d, \mathrm{~mm}$ | $D_{\mathrm{p}}, \mathrm{mm}$ | $\sigma$ | $\sigma / D_{\mathrm{p}}$ | $L_{\mathrm{cm}} \cdot \mathrm{nm}$ | $L_{\mathrm{cm},}, \mathrm{nm}^{a}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| A | 21.076 | 1.3036 | 0.0443 | 0.0340 | $206 \pm 7.0$ | 214 |
| B | 20.474 | 1.5174 | 0.0321 | 0.0212 | $247 \pm 5.2$ | 247 |
| C | 20.201 | 1.6068 | 0.0239 | 0.0149 | $265 \pm 3.9$ | 268 |
| D | 20.832 | 1.8041 | 0.0279 | 0.0154 | $289 \pm 4.5$ | 300 |

$D_{\mathrm{p}}$ is the latex particle size, $d$ is the period distance in a standard grating (read on a photographic plate); $\sigma$ is the standard deviation of the $D_{\mathrm{p}}$ values; $\sigma / D_{\mathrm{p}}$ gives the stability of the assembly; $L_{\mathrm{em}}$ is the actual particle size of latexes determined in the present work; ${ }^{a}$ the particle size given by the producer of latexes.

Electron microscopy: The specimens for electron microscopy were treated by the common replica technique. At the same time, a replica of the grating having a known period distance was also prepared. The photographic plates thus obtained were measured with an Abbé comparator (Zeiss, Jena). Several hundreds of particles were measured in each sample. The data were then compared with those obtained by the light scattering method.

## RESULTS AND DISCUSSION

## Forward Angle Dissymmetry Method

As has been said above, the method used by the author is an adapted FAR method (Maron and Pierce ${ }^{3}$ ) for the determination of the number and size of particles, especially in systems whose composition is not known. As long as our results are identical with those obtained by these authors, they are mentioned only briefly; a broader explanation is offered in those cases only when the findings and aspects under consideration are original, or the points of view are different.

In contrast with the classical definition of dissymmetry, $z=i_{0} / i_{180-\theta}$, let us define forward angle dissymmetry $\zeta=i_{\theta_{1}} / i_{\theta_{2}}$, where $\theta_{2}-\theta_{1}=10$ or $15^{\circ}$, both angles lying within the range $\theta<90^{\circ}$. In the case under consideration, we measured the forward angle dissymmetry values $\zeta_{u}, \zeta_{v}, \zeta_{h}$ at angles $30 / 45$ and $45 / 60$ and two wavelengths, 436 and 546 nm ; the indexes $u$, $v$, h refer to the unpolarized and vertically or horizontally polarized beam of primary light, respectively. If we express $i_{0}$ in terms of the Mie theory and use the corresponding tables ${ }^{4}$, we can easily obtain the necessary data for constructing the dependences $\zeta=\mathrm{f}(\alpha)$ or $\zeta=\mathrm{f}(L)$, where $\alpha=\pi L / \lambda$ ( $L$ being the diameter of a spherical particle, and $\lambda$ being the wavelength of light in the given medium). The values thus obtained for the relative refractive index $m=1.05 ; 1.10 ; 1.15 ; 1.20$ and for the interval of the values $\alpha=\langle 0.2(0.2) 10.0\rangle$
are summarized in Tables II and III. Using these data, it is easy to construct graphs suitable for practical uses ( $\zeta$ as functions $L(436)$ and $L(546)$ ). The limit values of $\zeta$ for $\alpha=0$ are defined as follows:

$$
\begin{array}{lcc}
\lim \zeta_{\mathrm{u}}=\left(1+\cos ^{2} \theta_{1}\right) /\left(1+\cos ^{2} \theta_{2}\right) & 30 / 45 & 45 / 60 \\
\alpha=0 & 7 / 6 & 6 / 5 \\
\lim \zeta_{\mathrm{v}}=1 & & \\
\alpha=0 & 1 & 1 \\
\lim \zeta_{\mathrm{h}}=\cos ^{2} \theta_{1} / \cos ^{2} \theta_{2} & 3 / 2 & 2 \\
\alpha=0
\end{array}
$$

The character of the curves $\zeta=\mathrm{f}(\alpha)$ allows an approximate linear numerical interpolation inside the individual intervals, almost as far as the first maximum, which is shifted to higher $\alpha$ values than it is observed with other methods. The first maximum $\zeta_{\mathrm{u}}^{\mathrm{L}}$ (but also $\zeta_{\mathrm{v}}^{\mathrm{I}}$ and $\zeta_{\mathrm{h}}^{\mathrm{I}}$ ) lies approximately at $\alpha \approx 5 \cdot 6 ; 5 \cdot 6 ; 5 \cdot 4 ; 5 \cdot 2$ (for $\theta_{1} / \theta_{2}=30 / 45$ ) and $\alpha \approx 4.4 ; 4.2 ; 4.0 ; 4.0$ (for $\theta_{1} / \theta_{2}=45 / 60$ ) for $m=1.05 ; 1 \cdot 10 ; 1 \cdot 15 ; 1.20$. For the values of maxima it holds: $\zeta_{\mathrm{v}}^{\mathrm{l}}>\zeta_{\mathrm{u}}^{\mathrm{I}}>\zeta_{\mathrm{h}}^{\mathrm{I}}$, and further $\zeta^{\mathrm{I}}(30 / 45)>\zeta^{\mathrm{I}}(45 / 60)>$ $>\zeta^{1}(60 / 75)$ (which can be illustrated by data in Tables II - IV).

In the case of strictly monodisperse systems the particle sizes can in principle be determined also for $\alpha$ values higher than those corresponding to the first maximum of the dependence $\zeta=\mathrm{f}(\alpha)$. To this purpose, measurements at two wavelengths are used, namely, at 436 and 546 nm . We discern two cases: a) Function $\zeta=\mathrm{f}(\alpha)$ is bi-valued for the dissymmetry values measured: if $\zeta_{436}>\zeta_{546}$, then we have here the ascending part of the curve; in the opposite case, the part under consideration is the descending one (both $\zeta_{436}$ and $\zeta_{546}$ must of course lie on the same side of the peak). b) Function $\zeta=\mathrm{f}(\alpha)$ is multi-valued: the analysis is possible in exceptional cases only, taking into account $a$ ) and the magnitude of $\zeta$ at $30 / 45$ and $45 / 60$, or the values $\zeta_{\mathrm{u}}, \zeta_{\mathrm{v}}, \zeta_{\mathrm{h}}$.

Determination of the particle size in polydisperse systems (or, more exactly, determination of the size distribution) is generally not an easy task. A certain hope of success may arise with systems having particle sizes much smaller than it would correspond to $\zeta_{\max }$, provided that the distribution function is known, or a justified assumption as to its character can be made, and if several pairs of angles of wavelengths are used for the determination of $\zeta$. In the case of slightly polydisperse systems, dependences strictly valid for monodisperse systems can be used for an estimation or approximate determination of an average particles size; however, the conclusions arrived at ought to be verified by using another independent method.

A considerable advantage of the method described above consists in the comparatively very small dependence of the initial course of the function $\zeta=\mathrm{f}(\alpha)$ on the relative refractive index, $m$ (cf. ${ }^{3}$ and Tables II and III), which allows an investigation
cven of such systems in which an exact determination of $m$ would be difficult, if not impossible.

## Determination of the Size of Latex Particles

To estimate the objectivity of the particle size determination by light scattering methods, polystyrene latex is used as a rule, and a new (or adapted) method is usually tested by comparing it with the electron microscopic data.

The electron microscopic determinations of the size of latex particles were carried out on samples $A-D$, taken directly from the measuring cells; it was therefore possible to consider some changes that might occur owing to the dilution of the samples. The magnitude of the particle images recorded on the photographic plates was compared with, the periodic distance on the standard grating. The results were treated statistically (from several hundreds of measurements) and summarized in Table I. The dilution of original samples did not lead to any conclusive changes in the average particle size. The degree of polydispersity of the particles can be estimated on the basis of the magnitude of the standard deviation $\sigma$ : polydispersity increases in the series of samples $C, D, B, A$. In the case of sample A there was a clear tendency toward aggregation of the individual latex particles; as to the other samples, the association of particles was less pronounced.

The forward angle dissymmetry values, $\zeta$, were determined for two pairs of angles ( $30 / 45$ and $45 / 60$ ) and for two wavelengths ( 436 and 546 nm ), unpolarized (u) or polarized vertically (v) or horizontally (h). Although the results obtained are in a fairly good agreement with the electron microscopic data (Table V), there are still some deviations and tendencies which we shall try to explain below.

Let us first admit that the data obtained are correct as far as the experimental procedure itself is concerned (preparation of the sample, measurement of the intensities of the scattered light and extrapolation of the dissymmetry values to zero concentration). If we now write down quotients $L(546) / L(436)$ and $L(30 / 45) / L(45 / 60)$ for unpolarized (u), vertically (v) or horizontally (h) polarized light, we can imagine to what extent the differences observed are random or regular (Table VI). It is easy to see, in the case of quotients $L(546) /(436)$, that the values of $L(546)$ are almost in all cases clearly higher than $L(436)$. At the same time, the quotient for sample A has practically always substantially higher value than for the other samples. The quotient $L(30 / 45) / L(45 / 60)$, too, behaves in a similar way. Although in the case of samples $\mathrm{B}, \mathrm{C}$, and D its values are slightly more different from 1.00 in comparison with the values of the quotient $L(546) / L(436)$, the difference from sample A is still pronounced. The quotients of the individual samples remain comparatively constant, which indicates a non-random, physical nature of the differences observed in the particle sizes determined by different methods.
Table II
Values of the Function $\zeta=f(\alpha)$ for the Pair of Angles $\theta_{1} / \theta_{2}=30 / 45$; Relative Refractive Index $m=1 \cdot 05 ; 1 \cdot 10 ; 1 \cdot 15 ; 1 \cdot 20$; Unpolarized (u), Vertically (v) and Horizontally (h) Polarized Primary Beam

| $\alpha$ | 1.05 |  |  | $1 \cdot 10$ |  |  | $1 \cdot 15$ |  |  | $1 \cdot 20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | u | v | h | u | v | h | u | v | h | u | v | h |
| 0.2 | $1 \cdot 1696$ | 1.0026 | 1.5037 | 1-1696 | 1.0026 | 1.5035 | $1 \cdot 1696$ | 1.0027 | 1.5033 | 1-1696 | 1.0027 | 1.5032 |
| $0 \cdot 4$ | 1.1785 | 1.0104 | 1.5147 | 1-1785 | 1.0105 | 1.5140 | $1 \cdot 1785$ | 1.0106 | 1.5133 | 1-1785 | 1.0107 | 1.5126 |
| $0 \cdot 6$ | $1 \cdot 1936$ | 1.0234 | 1.5333 | 1-1934 | 1.0298 | 1.5315 | 1-1933 | 1.0239 | 1.5299 | 1-1932 | 1.0242 | 1.5282 |
| $0 \cdot 8$ | 1.2150 | 1.0421 | 1.5596 | $1 \cdot 2146$ | 1.0424 | 1.5562 | $1 \cdot 2142$ | 1.0428 | $1 \cdot 5530$ | $1 \cdot 2139$ | 1.0432 | 1.5496 |
| 1.0 | 1.2434 | 1.0669 | 1.5942 | $1 \cdot 2426$ | 1.0673 | 1.5887 | 1.2418 | 1.0678 | $1 \cdot 5830$ | $1 \cdot 2412$ | 1.0685 | 1.5774 |
| $1 \cdot 2$ | $1 \cdot 2794$ | 1.0984 | 1.6381 | 1.2783 | 1.0992 | 1.6295 | $1 \cdot 2746$ | 1-1002 | 1.6207 | $1 \cdot 2762$ | 1-1014 | 1.6117 |
| 1.4 | $1 \cdot 3242$ | 1-1376 | $1 \cdot 6922$ | 1.3231 | 1.1394 | 1.6799 | 1.3218 | 1-1414 | 1.6671 | $1 \cdot 3207$ | $1 \cdot 1438$ | 1.6538 |
| $1 \cdot 6$ | 1.3791 | 1-1859 | 1.7584 | 1.3782 | 1-1893 | 1.7414 | 1.3774 | 1.1933 | 1.7235 | $1 \cdot 3766$ | 1-1979 | 1.7043 |
| $1 \cdot 8$ | 1.4457 | 1.2446 | 1.8381 | 1.4456 | $1 \cdot 2505$ | 1.8156 | 1.4455 | 1.2574 | 1.7913 | 1.4445 | $1 \cdot 2652$ | 1.7649 |
| 2.0 | 1.5259 | $1 \cdot 3152$ | 1.9338 | 1.5269 | $1 \cdot 3246$ | 1.9047 | 1.5274 | 1.3350 | 1.8729 | $1 \cdot 5271$ | $1 \cdot 3462$ | 1.8383 |
| $2 \cdot 2$ | 1.6220 | $1 \cdot 4000$ | 2.0486 | 1.6243 | 1.4134 | 2.0121 | 1.6254 | 1.4276 | 1.9727 | 1.6254 | 1.4420 | 1.9316 |
| $2 \cdot 4$ | 1.7373 | 1.5019 | 2.1866 | 1.7414 | 1.5199 | 2.1431 | 1.7442 | 1.5385 | 2.0983 | $1 \cdot 7465$ | $1 \cdot 5574$ | 2.0553 |
| $2 \cdot 6$ | 1.8767 | 1.6247 | $2 \cdot 3540$ | 1.8843 | 1. 6492 | $2 \cdot 3050$ | 1.8920 | 1.6752 | 2.2591 | 1.9016 | 1.7031 | 2.2204 |
| $2 \cdot 8$ | 2.0466 | 1.7743 | 2.5589 | 2.0615 | 1.8092 | $2 \cdot 5075$ | 2.0793 | 1.8481 | $2 \cdot 4643$ | 2-1031 | 1.8935 | $2 \cdot 4323$ |
| 3.0 | 2.2567 | 1.9593 | 2.8124 | $2 \cdot 2842$ | $2 \cdot 0107$ | 2.7615 | 2.3183 | 2.0710 | 2.7215 | $2 \cdot 3609$ | $2 \cdot 1438$ | 2.6904 |
| $3 \cdot 2$ | 2.5191 | 2.1907 | $3 \cdot 1283$ | 2.5660 | 2.2671 | 3.0795 | $2 \cdot 6210$ | $2 \cdot 3577$ | 3.0387 | $2 \cdot 6805$ | $2 \cdot 4629$ | $2 \cdot 9973$ |
| 3.4 | 2.8512 | $2 \cdot 5067$ | $3 \cdot 5266$ | 2.9243 | $2 \cdot 5958$ | $3 \cdot 4785$ | 3.0019 | 2.7236 | 3.4302 | 3.0481 | $2 \cdot 8602$ | 3.3733 |
| $3 \cdot 6$ | 3.2769 | $2 \cdot 8613$ | 4.0345 | $3 \cdot 3839$ | 3.0205 | 3.9850 | $3 \cdot 4875$ | $3 \cdot 1937$ | 3.9262 | $3 \cdot 5788$ | $3 \cdot 3703$ | 3.8601 |
| $3 \cdot 8$ | 3.8329 | $3 \cdot 3557$ | 4.6934 | 3.9864 | $3 \cdot 5810$ | $4 \cdot 6420$ | $4 \cdot 1302$ | $3 \cdot 8222$ | $4 \cdot 5755$ | $4 \cdot 2703$ | $4 \cdot 0842$ | 4.5108 |
| 4.0 | 4.5779 | 4.0208 | $5 \cdot 5709$ | 4.8033 | 4.3491 | $5 \cdot 5192$ | $5 \cdot 0234$ | $4 \cdot 7169$ | 5.4477 | $5 \cdot 2658$ | $5 \cdot 1725$ | $5 \cdot 3777$ |
| $4 \cdot 2$ | $5 \cdot 6114$ | 4.9485 | 6.7762 | 5.9601 | 5.4559 | 6.7284 | 6.3171 | 6.0705 | $6 \cdot 6372$ | 6.7066 | 6.8903 | 6.5091 |
| 4.4 | $7 \cdot 1115$ | 6.3050 | 8.5025 | 7.6776 | $7 \cdot 1442$ | 8.4533 | $8 \cdot 2440$ | 8.2138 | 8.2799 | 8.7418 | 9.5741 | 7.9652 |
| 4.6 | 9.4094 | 8.4148 | 11.104 | 10.361 | 9.8870 | 11.006 | $11 \cdot 167$ | 11.738 | 10.569 | 11.541 | 13.710 | 9.8136 |
| $4 \cdot 8$ | 13.231 | 11.966 | 15.287 | . 14.934 | 14.705 | 14.925 | 15.649 | 17.807 | 13.728 | 15.197 | 20.052 | 12.001 |
| $5 \cdot 0$ | $20 \cdot 207$ | 18.650 | 22.598 | 23.850 | 24.069 | 21.082 | 22.253 | 28.583 | 17.761 | 19.009 | 28.286 | 14.054 |

Table II
(Continued)

| $\alpha$ | 1.05 |  |  | $1 \cdot 10$ |  |  | $1 \cdot 15$ |  |  | $1 \cdot 20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | u | v | h | u | v | h | u | v | h | u | v | h |
| $5 \cdot 2$ | 34.903 | $33 \cdot 530$ | 36.810 | 36.700 | 44.412 | 30.414 | 29.812 | 44.496 | 21.744 | 20.476 | 31.755 | 14.936 |
| $5 \cdot 4$ | 72.577 | 76.904 | 67.778 | 57.376 | 84.705 | 41.515 | 32.188 | 49.282 | 23.278 | 17.742 | 24.501 | 13.849 |
| $5 \cdot 6$ | 177.53 | $248 \cdot 18$ | 130.83 | $63 \cdot 013$ | $93 \cdot 288$ | $45 \cdot 658$ | 25.590 | 32.823 | 20.658 | 12.958 | $15 \cdot 136$ | $11 \cdot 328$ |
| $5 \cdot 8$ | 194.45 | $240 \cdot 21$ | $152 \cdot 15$ | 41.742 | $47 \cdot 674$ | 36.487 | 16.844 | 18.085 | 15.698 | 8.7452 | 8.8817 | 8.6163 |
| 6.0 | 73.815 | 69.561 | 79.877 | 23.008 | $22 \cdot 351$ | 23.806 | 10.609 | $10 \cdot 182$ | 11.093 | $5 \cdot 8383$ | $5 \cdot 3226$ | 6.4143 |
| $6 \cdot 2$ | 30.736 | 26.903 | 37.291 | 13.052 | 11.782 | 14.853 | 6.8248 | 6.0938 | 7.7622 | 4.0129 | $3 \cdot 3852$ | $4 \cdot 7840$ |
| $6 \cdot 4$ | 15.530 | 13.311 | 19.513 | 7.9235 | $6 \cdot 8823$ | 9.5090 | 4.5683 | 3.8766 | $4 \cdot 5172$ | $2 \cdot 8729$ | 2.3129 | $3 \cdot 5833$ |
| 6.6 | 8.9081 | $7 \cdot 5709$ | 11.338 | $5 \cdot 1042$ | 4.3209 | 6.3370 | $3 \cdot 1787$ | 2.6014 | 3.9916 | $2 \cdot 1235$ | $1 \cdot 6629$ | $2 \cdot 7063$ |
| $6 \cdot 8$ | 5.5339 | 4.6775 | 7.0917 | 3.4356 | 2.8487 | $4 \cdot 3700$ | 2.2809 | 1.8149 | 2.9365 | 1.6135 | 1.2251 | 2-1006 |
| $7 \cdot 0$ | $3 \cdot 6103$ | 3.0351 | $4 \cdot 6525$ | 2.3816 | 1.9362 | 3.0887 | 1.6812 | 1.2982 | $2 \cdot 2132$ | 1.2876 | 0.9336 | 1.7271 |
| $7 \cdot 2$ | 2.4182 | 2.0191 | $3 \cdot 1363$ | 1.6830 | 1.3369 | 2.2262 | 1.2872 | 0.9556 | 1.7409 | 1-1255 | 0.7827 | 1.5442 |
| $7 \cdot 4$ | 1.6318 | 1.3492 | $2 \cdot 1359$ | $1 \cdot 2113$ | 0.9317 | 1.6429 | 1.0551 | 1.7502 | $1 \cdot 4645$ | 1.1177 | 0.7808 | 1.5144 |
| $7 \cdot 6$ | 1.0907 | 0.8874 | 1.4494 | 0.9014 | 0.6634 | 1.2621 | 0.9642 | 0.6705 | $1 \cdot 3480$ | $1 \cdot 2641$ | 0.9494 | 1.6136 |
| $7 \cdot 8$ | 0.7121 | 0.5632 | 0.9716 | 0.7216 | 0.5060 | 1.0408 | 1.0142 | 0.7242 | 1.3764 | 1.5823 | $1 \cdot 3312$ | 1.8364 |
| $8 \cdot 0$ | 0.4537 | 0.3407 | 0.6476 | 0.6636 | 0.4551 | 0.9632 | 1.2307 | 0.9503 | 1.5581 | 2.0962 | 1.9771 | $2 \cdot 2040$ |
| $8 \cdot 2$ | 0.2986 | 0.2066 | 0.4541 | 0.7473 | 0.5333 | 1.0475 | 1.6725 | 1.4328 | 1.9282 | 2.8653 | 2.9776 | 2.7751 |
| 8.4 | 0.2543 | 0.1686 | 0.3960 | 1.0340 | 0.8092 | 1.3252 | 2.4443 | 2.3296 | 2.5540 | 4.0494 | 4.6378 | 3.6331 |
| 8.6 | 0.3640 | 0.2681 | 0.5183 | 1.6579 | 1.4413 | 1.9162 | 3.7331 | 3.9651 | $3 \cdot 5398$ | 5.8738 | 7.6223 | 4.8227 |
| $8 \cdot 8$ | 0.7434 | 0.6169 | 0.9391 | $2 \cdot 8907$ | 2.7882 | 2.9996 | $5 \cdot 8227$ | 7.0099 | 4.9941 | $8 \cdot 2687$ | 12.298 | 6.2250 |
| $9 \cdot 0$ | 1.6817 | 1.5069 | 1.9365 | $5 \cdot 2649$ | 5.7026 | 4.8716 | 8.8615 | 12.276 | 6.8988 | 10.309 | 16.363 | 7.4541 |
| $9 \cdot 2$ | 3.9495 | 3.7784 | $4 \cdot 1758$ | 9.6088 | 12.081 | 7.8501 | 12.047 | $18 \cdot 190$ | 8.8800 | 10.790 | 15.991 | 8.0553 |
| $9 \cdot 4$ | 9.8309 | $10 \cdot 324$ | 9.2861 | 15.908 | 23.156 | 11.730 | 13.538 | 19.389 | 10.216 | 9.7031 | 12.386 | 7.9212 |
| 9.6 | 25.801 | $32 \cdot 549$ | 20.514 | 20.031 | 28.641 | 14.914 | $12 \cdot 707$ | 15.909 | 10.427 | 8.0898 | 8.9782 | $7 \cdot 3374$ |
| $9 \cdot 8$ | $51 \cdot 218$ | $75 \cdot 676$ | 36.476 | 18.572 | 22.349 | 15.543 | 8.2009 | 11.872 | 9.7251 | 6.7632 | 6.8860 | 6.4400 |
| $10 \cdot 0$ | $43 \cdot 334$ | 48.738 | 38.045 | $13 \cdot 123$ | 15.493 | 14.020 | 6.9958 | 8.9023 | 8.6429 | 5.8733 | $5 \cdot 7604$ | 5.9960 |

Table III
Values of the Function $\zeta=\mathrm{f}(\alpha)$ for the Pair of Angles $\theta_{1} / \theta_{2}=45 / 60$; Relative Refractive Index $m=1 \cdot 05 ; 1 \cdot 10 ; 1 \cdot 15 ; 1 \cdot 20$; Unpolarized (u) Vertically (v) and Horizontally (h) Polarized Primary Beam

|  | 1.05 |  |  | $1 \cdot 10$ |  |  | $1 \cdot 15$ |  |  | 1.20 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | u | $v$ | h | u | v | h | u | v | h | u | v | h |
| $0 \cdot 2$ | 1-2040 | 1.0034 | 2.0062 | $1 \cdot 2041$ | 1.0034 | 2.0058 | $1 \cdot 2041$ | 1.0034 | 2.0053 | 1-2041 | 1.0035 | 2.0048 |
| 0.4 | $1 \cdot 2162$ | 1.0135 | 2.0250 | 1.2162 | 1.0137 | 2.0231 | 1.2163 | 1.0139 | 2.0211 | $1 \cdot 2164$ | 1.0140 | 2.0192 |
| 0.6 | $1 \cdot 2367$ | 1.0308 | 2.0566 | 1.2318 | 1.0311 | 2.0520 | 1.2369 | 1.0314 | 2.0474 | 1.2371 | 1.0317 | 2.0427 |
| 0.8 | $1 \cdot 2663$ | $1 \cdot 0557$ | 2. 1018 | $1 \cdot 2663$ | 1.0561 | 2.0931 | 1.2663 | 1.0565 | 2.0840 | 1.2664 | 1.0571 | 2.0751 |
| 1.0 | 1.3059 | 1.0890 | 2.1620 | 1.3059 | 1.0897 | 2.1469 | 1.3058 | 1.0904 | $2 \cdot 1316$ | 1.3058 | 1.0912 | 2.1161 |
| 1.2 | 1.3574 | 1.1323 | 2.2391 | 1.3574 | $1 \cdot 1336$ | $2 \cdot 2152$ | 1.3574 | $1 \cdot 1350$ | 2.1908 | 1.3577 | 1-1367 | $2 \cdot 1661$ |
| 1.4 | 1.4230 | 1-1877 | 2.3360 | 1.4235 | 1-1902 | 2.3000 | 1.4245 | 1-1934 | $2 \cdot 2632$ | 1.4256 | 1-1970 | 2.2253 |
| 1.6 | 1.5058 | $1 \cdot 2578$ | $2 \cdot 4565$ | 1.5082 | 1.2632 | 2.4047 | 1.5109 | 1.2696 | 2.3508 | 1.5140 | 1.2770 | 2.2947 |
| 1.8 | 1.6100 | $1 \cdot 3462$ | $2 \cdot 6059$ | 1.6156 | 1.3565 | 2.5334 | 1.6214 | 1.3684 | 2.4569 | 1.6271 | 1.3819 | $2 \cdot 3764$ |
| 2.0 | 1.7413 | 1.4580 | $2 \cdot 7922$ | 1.7515 | 1.4754 | 2.6928 | 1.7609 | 1.4948 | 2.5881 | 1.7688 | 1.5161 | 2.4790 |
| 2.2 | 1.9073 | 1-5997 | 3.0259 | 1.9232 | 1.6266 | $2 \cdot 8937$ | 1.9364 | 1.6555 | 2.7573 | 1.9454 | 1.6856 | 2.6201 |
| $2 \cdot 4$ | 2.1198 | 1.7815 | 3.3245 | 2.1433 | 1.8213 | 3.1548 | 2-1618 | 1.8628 | 2.9869 | 2.1744 | 1.9049 | 2.8296 |
| $2 \cdot 6$ | 2.3975 | 2.0194 | $3 \cdot 7152$ | 2.4339 | $2 \cdot 0788$ | $3 \cdot 5050$ | $2 \cdot 4640$ | 2.1411 | $3 \cdot 3091$ | $2 \cdot 4911$ | $2 \cdot 2072$ | 3.1395 |
| $2 \cdot 8$ | $2 \cdot 7715$ | $2 \cdot 3406$ | 4.2411 | $2 \cdot 8328$ | $2 \cdot 4342$ | 3.9873 | 2.8918 | $2 \cdot 5383$ | 3.7648 | 2.9565 | $2 \cdot 6601$ | 3.5839 |
| 3.0 | $3 \cdot 2964$ | 2.7924 | 4.9732 | 3.4081 | $2 \cdot 9521$ | 4.6657 | 3.5263 | $3 \cdot 1434$ | 4.4002 | 3.6606 | 3.3856 | 4.1762 |
| $3 \cdot 2$ | $4 \cdot 0708$ | 3.4632 | 6.0338 | 4.4307 | 3.7555 | 5.6381 | 4.5024 | $4 \cdot 1243$ | $5 \cdot 2686$ | $4 \cdot 7215$ | $4 \cdot 6002$ | 4.9099 |
| $3 \cdot 4$ | $5 \cdot 2908$ | $4 \cdot 5310$ | 7.6507 | 5.6872 | 5.0979 | 7.0649 | 6.0503 | 5.8231 | 6.4368 | 6.2848 | 6.7072 | 5.7762 |
| $3 \cdot 6$ | 7.3962 | $6 \cdot 4069$ | 10.292 | 8.1334 | 7.5912 | 9.2222 | 8.5886 | 9.0590 | 7.9846 | 8.5320 | 10.602 | 6.7519 |
| 3.8 | 11.565 | 10.248 | 15.056 | 12.870 | 13.070 | 12.559 | 12.847 | 16.197 | 9.8903 | 11.353 | 18.073 | 7.6678 |
| 4.0 | 21.914 | $20 \cdot 545$ | 24.871 | 22.987 | 28.843 | 17.417 | 18.453 | 32.216 | 11.595 | 12.565 | 23.808 | 8.0193 |
| $4 \cdot 2$ | $59 \cdot 100$ | 68.811 | 47.360 | $37 \cdot 830$ | 72.906 | 21.833 | 17.970 | 31.423 | 11.551 | $9 \cdot 2473$ | 12.551 | 7.2108 |
| $4 \cdot 4$ | 128.13 | 226.86 | 73.177 | 25.799 | 33.646 | 19.269 | 9.8419 | 10.739 | 8.956 | $5 \cdot 1021$ | 4.7688 | 5.4588 |
| $4 \cdot 6$ | $30 \cdot 199$ | 26.978 | 37.695 | 9.5324 | 8.5491 | 11.296 | 4.4627 | 3.7089 | 5.670 | 2.6986 | 2.0232 | 3.6756 |
| 4.8 | 7.9908 | 6.4792 | 12.871 | $2 \cdot 8193$ | 2.8451 | . 5.5764 | 2.1018 | 1.7807 | $3 \cdot 310$ | 1.4925 | 0.9480 | 2.3995 |
| $5 \cdot 0$ | 2.7612 | 2-1631 | 4.8006 | 1.5310 | 1.0821 | $2 \cdot 7220$ | 1.0012 | $0 \cdot 6516$ | 1.9624 | 0.9072 | $0 \cdot 4923$ | 1.6497 |

Table III
(Continued)

| $\alpha$ | 1.05 |  |  | $1 \cdot 10$ |  |  | $1 \cdot 15$ |  |  | $1 \cdot 20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | u | $v$ | h |
| $5 \cdot 2$ | 1.0313 | 0.7748 | 1.9071 | 0.6835 | 0.4211 | 1.3949 | 0.6209 | $0 \cdot 3208$ | 1.2781 | 0.6719 | 0.3411 | 1.2832 |
| $5 \cdot 4$ | 0.3638 | 0.2481 | 0.7537 | 0.3528 | $0 \cdot 1744$ | 0.8087 | 0.4442 | 0.2372 | 0.9925 | 0.6581 | 0.3721 | 1.1803 |
| $5 \cdot 6$ | 0.1195 | 0.0619 | 0.3101 | 0.2670 | 0.1343 | 0.6165 | 0.4884 | 0.3114 | 0.9663 | 0.8186 | 0.5540 | 1.2739 |
| $5 \cdot 8$ | 0.0941 | 0.1054 | 0.2269 | 0.3617 | 0.2368 | 0.6789 | 0.6868 | 0.5298 | $1 \cdot 1410$ | 1.1764 | 0.9419 | 1.5380 |
| 6.0 | 0.2272 | 0.1758 | 0.3893 | 0.6176 | $0 \cdot 4834$ | 0.9567 | 1.1484 | 0.9483 | 1.2509 | 1.8112 | 1.6847 | 1.9769 |
| 6.2 | 0.5289 | 0.4429 | 0.7913 | 1-1030 | 0.9367 | 1.4741 | 1.8733 | 1.7237 | 2.1075 | $2 \cdot 8436$ | 3.0518 | 2.6238 |
| 6.4 | 1.0765 | 0.9276 | 1.5120 | 1.9532 | 1.7682 | 2.3234 | 3.1304 | $3 \cdot 2168$ | 3.0193 | $4 \cdot 4407$ | $5 \cdot 5820$ | 3.5261 |
| 6.6 | 2.0705 | 1.8203 | 2.7596 | $3 \cdot 5231$ | $3 \cdot 4193$ | 3.7000 | 5.3333 | $6 \cdot 3312$ | 4.3647 | 6.7663 | 10.469 | 4.6747 |
| 6.8 | 4.0291 | 3.6341 | 5.0222 | $6 \cdot 6492$ | $7 \cdot 1824$ | 5.9466 | 9.0291 | 13.405 | 6.1875 | 9.3799 | 18.026 | 5.8589 |
| 7.0 | 8.5107 | 8.0480 | 9.5006 | 13.141 | 17.449 | 9.4416 | 13.550 | 25.973 | 8.1415 | 10.342 | 19.060 | 6.5976 |
| 7.2 | 21.314 | 22.736 | 19.159 | 23.468 | $42 \cdot 828$ | 13.730 | 14.651 | 25.463 | 9.2688 | 8.7578 | 12.317 | 6.4725 |
| 7.4 | $62 \cdot 312$ | 97.323 | 37.961 | 25.031 | 39.272 | 16.050 | 11.215 | 14.080 | 8.8081 | 6.3657 | $7 \cdot 1822$ | $5 \cdot 6187$ |
| 7.6 | 68.668 | 89.912 | 48.470 | 15.983 | 17.433 | 14.196 | 7.4349 | $7 \cdot 6007$ | 7.2287 | 4.3919 | $4 \cdot 2625$ | 4.5454 |
| 7.8 | 26.985 | 24.759 | 31.996 | 9.2384 | $8 \cdot 5656$ | 10.454 | 4.8587 | $4 \cdot 4442$ | $5 \cdot 4993$ | 3.0393 | 2.6245 | 3.6182 |
| 8.0 | $12 \cdot 302$ | 10.452 | 17.677 | 5.6135 | 4.8572 | 7.2312 | 3.2633 | 2.7709 | $4 \cdot 1172$ | $2 \cdot 2031$ | 1.7303 | 2.9264 |
| 8.2 | 6.7605 | 5.6138 | 10.322 | 3.6133 | 3.0089 | 5.0038 | 2.2900 | 1.8270 | 3.1384 | 1.7059 | 1.2483 | 2.4205 |
| 8.4 | $4 \cdot 1478$ | 3.4083 | 6.4708 | 2.4393 | 1.9660 | 3.5444 | 1.5886 | 1.2732 | 2.4662 | 1.3966 | 0.9664 | 2.0386 |
| 8.6 | 2.7051 | $2 \cdot 2041$ | $4 \cdot 2655$ | 1.7078 | $1 \cdot 3291$ | 2.5863 | 1.3139 | 0.9308 | 2.0001 | $1 \cdot 1981$ | 0.7837 | 1.7563 |
| 8.8 | 1.8176 | 1.4648 | 2.8970 | $1 \cdot 2324$ | 0.9162 | 1.9453 | 1.0734 | 0.7076 | 1.6805 | 1-1088 | 0.6943 | 1.5901 |
| 9.0 | 1.2279 | 0.9721 | 1.9921 | 0.9152 | 0.6354 | 1.5144 | 0.9494 | 0.5814 | 1.4924 | $1 \cdot 1797$ | 0.7677 | 1.5792 |
| 9.2 | 0.8138 | 0.6233 | $1 \cdot 3658$ | 0.7165 | $0 \cdot 4411$ | $1 \cdot 2461$ | 0.9807 | 0.6002 | 1.4567 | 1.5128 | 1.1848 | 1.7704 |
| 9.4 | 0.5158 | 0.3680 | 0.9269 | 0.6524 | 0.3712 | $1 \cdot 1450$ | 1.2708 | 0.9176 | 1.6222 | 2.2982 | 2.4580 | 2.2030 |
| 9.6 | 0.3196 | 0.1938 | 0.6497 | 0.8209 | 0.5142 | 1.2717 | 2.0186 | 1.9670 | 2.0569 | $3 \cdot 6902$ | $5 \cdot 6005$ | 2.8631 |
| 9.8 | 0.2768 | 0.1473 | 0.5882 | 1.5225 | 1.2551 | 1.7557 | 4.5762 | 4.8213 | 2.8072 | $5 \cdot 2032$ | 9.3742 | 3.5972 |
| $10 \cdot 0$ | 0.6162 | 0.4514 | 0.9585 | $3 \cdot 2539$ | 7-1818 | 2.7775 | 6.3406 | $9 \cdot 1239$ | 3.7734 | $5 \cdot 8218$ | 9.3626 | 4.1268 |

To allow a comparison of the values and course of functions, the tabular data are given with a considerable higher accuracy and for a broader range of the $\alpha$ values than needed for practical purposes.
Table IV
Values of the Function $\zeta=\mathrm{f}(\alpha)$ for the Pair of Angles $\theta_{1} / \theta_{2}=60 / 75$; Relative Refractive Index $m=1 \cdot 05 ; 1 \cdot 10 ; 1 \cdot 15 ; 1 \cdot 20$; Unpolarized (u), Vertically (v) and Horizontally (h) Polarized Primary Beam

| $\alpha$ | 1.05 |  |  | $1 \cdot 10$ |  |  | $1 \cdot 15$ |  |  | $1 \cdot 20$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | u | $v$ | h | u | $v$ | h | u | v | h | $u$ | $v$ | h |
| 0.2 | $1 \cdot 1761$ | 1.0039 | 3.7441 | 1.1762 | 1.0040 | 3.7416 | 1.1763 | 1.0040 | 3.7391 | 1.1763 | 1.0040 | 3.7364 |
| $0 \cdot 4$ | 1.1901 | 1.0158 | $3 \cdot 7803$ | 1.1904 | 1.0160 | 3.7703 | 1.1908 | 1.0162 | 3.7600 | 1.1912 | 1.0165 | 3.7492 |
| $0 \cdot 6$ | $1 \cdot 2140$ | 1.0360 | $3 \cdot 8417$ | 1.2228 | 1.0364 | 3.8177 | 1.2154 | 1.0368 | 3.7932 | 1.2162 | 1.0372 | 3.7688 |
| 0.8 | 1.2489 | 1.0656 | 3.9296 | 1.2500 | 1.0661 | 3.8834 | 1.2512 | 1.0667 | 3.8374 | 1.2524 | 1.0674 | 3.7912 |
| 1.0 | 1.2965 | 1-1059 | 4.0457 | 1.2981 | 1-1067 | 3.9671 | 1.3000 | 1.1076 | 3.8892 | 1.3021 | 1-1088 | $3 \cdot 8120$ |
| 1.2 | 1.3592 | 1-1592 | $4 \cdot 1940$ | 1.3623 | 1.1608 | 4.0687 | $1 \cdot 3657$ | 1.1627 | 3.9453 | 1.3693 | 1-1649 | 3.8241 |
| 1.4 | 1.4417 | 1.2292 | 4.3797 | 1.4475 | 1.2328 | $4 \cdot 1881$ | 1.4540 | $1 \cdot 2370$ | 4.0011 | 1.4611 | 1.2420 | $3 \cdot 8183$ |
| 1.6 | 1.5497 | 1.3209 | $4 \cdot 6109$ | 1.5611 | 1.3291 | $4 \cdot 3271$ | 1.5737 | 1.3385 | 4.0530 | 1.5875 | 1.3496 | 3.7887 |
| 1.8 | 1.6927 | 1.4425 | $4 \cdot 9006$ | 1.7138 | 1.4591 | 4.4911 | 1.7365 | 1.4782 | 4.1043 | 1.7604 | 1.5004 | 3.7410 |
| 2.0 | 1.8840 | 1.6058 | $5 \cdot 2698$ | 1.9201 | 1.6366 | 4.6942 | 1.9572 | 1.6718 | $4 \cdot 1699$ | 1.9924 | 1.7115 | 3.6998 |
| $2 \cdot 2$ | $2 \cdot 1458$ | 1.8301 | 5.7566 | 2.2039 | 1.8839 | 4.9640 | 2.2556 | 1.9436 | 4.2808 | $2 \cdot 3010$ | 2.0080 | 3.7046 |
| $2 \cdot 4$ | $2 \cdot 5172$ | $2 \cdot 1499$ | 6.4242 | 2.6073 | 2.2417 | 5.3461 | $2 \cdot 6807$ | $2 \cdot 3403$ | 4.4780 | 2.7262 | $2 \cdot 4428$ | 3.7948 |
| $2 \cdot 6$ | 3.0745 | 2.6333 | 7.3880 | 3.2172 | 2.7955 | 5.9082 | 3.3203 | 2.9696 | 4.8043 | 3.3714 | 3.1542 | $4 \cdot 0000$ |
| $2 \cdot 8$ | 3.9886 | 3.4345 | 8.8627 | 4.2695 | 3.7571 | 6.7392 | $4 \cdot 4026$ | $4 \cdot 1228$ | 5.2892 | $4 \cdot 4731$ | 4.5466 | 4.3249 |
| 3.0 | $5 \cdot 7152$ | 4.9772 | 11.280 | 6.2212 | 5.7702 | 7.9305 |  | 6.7637 | 5.9045 |  | 8.0241 | $4 \cdot 7006$ |

[^1]Collection Czechoslov. Chem. Commun. /Vol. 36/ (1971)

Before discussing the conclusions, let us try to find out to which extent the above assumption is warranted: 1. In the first place, the individual samples can be more or less polydisperse, which has already been indicated by the electron microscopic measurement. The polydispersity can be either primary (the individual particles are not monodisperse) or secondary (particles form larger aggregates). Both these tendencies were observed in the electron microscopic measurements: the former is determined by different values of the standard deviation (Table I), the latter is

Table V
Determination of the Latex Particle Sizes ( $L, \mathrm{~nm}$ ) of Samples $\mathrm{A} \rightarrow \mathrm{D}$ by the Forward Angle Dissymmetry Method (Two Independent Series of Measurements)

| $\lambda_{0}$ | $L\left(\zeta_{u}\right)$ |  | $L\left(\zeta_{V}\right)$ |  | $L\left(\zeta_{h}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 30/45 | 45/60 | 30/45 | 45/60 | 30/45 | 45/60 |
| Sample A ( $\left.L_{\mathrm{em}}=206 \mathrm{~nm}\right)$ |  |  |  |  |  |  |
| 436 | 284 | 230 | 279 | 227 | 290 | 249 |
|  | 287 | 230 | 280 | 226 | 292 | 236 |
| 546 | 340 | 276 | 334 | 258 | 356 | 298 |
|  | 338 | 269 | 335 | 255 | 355 | 286 |
| Sample B $\left(L_{\text {em }}=247 \mathrm{~nm}\right)$ |  |  |  |  |  |  |
| 436 | 256 | 249 | 249 | 243 | 249 | 238 |
|  | 253 | 251 | 250 | 244 | 246 | 240 |
| 546 | 256 | 249 | 262 | 242 | 257 | 238 |
|  | 253 | 251 | 250 | 242 | 249 | 243 |
| Sample C ( $L_{\mathrm{cm}}=265 \mathrm{~nm}$ ) |  |  |  |  |  |  |
| 436 | 268 | 256 | 259 | 253 | 256 | 242 |
|  | 261 | 262 | 265 | 257 | 249 | 246 |
| 546 | $268$ | 256 | 270 | 253 | 269 | 241 |
|  | 268 | 266 | 257 | 262 | 273 | 255 |
| Sample D ( $L_{\mathrm{em}}=289 \mathrm{~nm}$ ) |  |  |  |  |  |  |
| 436 | 289 | 283 | 284 | 277 | 283 | 276 |
|  | 289 | 287 | 287 | 280 | 281 | 277 |
| 546 | 289 | 284 | 283 | 279 | 282 | 276 |
|  | 284 | 286 | 287 | 278 | 283 | 277 |

$L_{\mathrm{em}}$ is the particle size determined by electron microscopy, $L$ is the particle size determined by the forward angle dissymmetry method $\zeta_{\mathrm{u}}, \zeta_{\mathrm{v}}$ and $\zeta_{\mathrm{h}}$, using light having the wavelength $\lambda_{0}$ (in vacuo) and at angle ratios $\theta_{1} / \theta_{2}=30 / 45$ and $45 / 60$. The $\zeta$ values were extrapolated to $x \rightarrow 0$ (where $x$ is the relative concentration of particles).
Table VI
Quotients $L(546) / L(436)$ and $L(30 / 45) / L(45 / 60)$ for Latex Samples A-D

| $L(546){ }_{\text {u }}$ |  | $L(546){ }_{\text {v }}$ |  | $L(546)_{\mathrm{h}}$ |  | $L(30 / 45)_{u}$ |  | $L(30 / 45)_{\mathrm{v}}$ |  | $L(30 / 45)_{h}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L(436){ }_{\mathbf{u}}$ |  | $L(436){ }_{\text {v }}$ |  | $L(436)_{\text {h }}$ |  | $L(45 / 60)_{u}$ |  | $L(45 / 60)_{v}$ |  | $L(45 / 60)_{\text {h }}$ |  |
| 30/45 | 45/60 | 30/45 | 45/60 | 30/45 | 45/60 | 436 | 546 | 436 | 546 | 436 | 546 |
| Sample A (206 nm) |  |  |  |  |  |  |  |  |  |  |  |
| 1.20 | $1 \cdot 20$ | 1.20 | $1 \cdot 14$ | $1 \cdot 23$ | $1 \cdot 20$ | 1.23 | $1 \cdot 23$ | 1.23 | 1.29 | 1.26 | $1 \cdot 19$ |
| $1 \cdot 18$ | $1 \cdot 17$ | $1 \cdot 20$ | $1 \cdot 12$ | $1 \cdot 22$ | $1 \cdot 21$ | $1 \cdot 25$ | 1.25 | 1.24 | 1.31 | $1 \cdot 24$ | $1 \cdot 24$ |
| Sample B (247 nm) |  |  |  |  |  |  |  |  |  |  |  |
| 1.00 | 1.00 | 1.05 | 1.00 | 1.03 | 1.00 | 1.03 | 1.03 | 1.02 | 1.08 | 1.05 | 1.08 |
| 1.00 | 1.00 | 1.00 | 0.99 | 1.01 | $1 \cdot 01$ | 1.09 | 1.01 | 1.02 | 1.03 | 1.02 | 1.02 |
| Sample C (265nm) |  |  |  |  |  |  |  |  |  |  |  |
| 1.00 | 1.04 | 1.04 | 1.00 | 1.05 | 1.00 | 1.05 | 1.05 | 1.02 | 1.07 | 1.06 | $1 \cdot 12$ |
| 1.03 | 1.00 | 0.97 | 1.02 | 1.09 | 1.03 | 1.00 | 1.00 | 1.03 | 0.98 | 1.01 | 1.07 |
| Sample D (289 nm) |  |  |  |  |  |  |  |  |  |  |  |
| 1.00 | 1.00 | $1 \cdot 00$ | 1.01 | 1.00 | 1.00 | 1.02 | 1.02 | 1.03 | 1.01 | $1 \cdot 02$ | 1.02 |
| ; |  |  |  |  |  |  |  |  |  |  |  |

The forward angle dissymmetry values were measured in unpolarized (u), vertically (v) and horizontally ( h ) polarized primary beam, the wavelength of which was 436 or 546 nm , at two pairs of angles $30 / 45$ and $45 / 60$.
corroborated by the fact that the scattering data (Tables V and VI) indicate a substantially higher degree of polydispersity of sample A than it would correspond to the respective standard deviation. 2. An important factor can also be seen in the preparation of samples having required concentrations (purification and dilution of samples). The purification of samples is generally difficult; in principle, only large particles that may be present can be removed (if sedimentation fractionation is not used). The samples should be diluted using a solution of stabilizer having the necessary concentration; not even in this case, however, is it possible to be sure that the aggregates that may be present in the solution have disintegrated into individual particles. 3. An extrapolation of the dissymmetry values, $\zeta$, to infinite dilution has proved to be absolutely necessary, owing to their pronounced concentration dependence. Maron and Pierce ${ }^{3}$ have shown that its slope increases with increasing particle size (the dependence becomes curved above 700 nm ). The dependences obtained in our case were mostly linear; their slope $k=\partial \zeta / \partial x$ (where $x$ is relative concentration) were negative in all cases (Table VII), which is in agreement with observations made by Maron and Pierce ${ }^{3}$ (their ratio $X$ being a reciprocal value of our dissymmetry $\zeta$ ). An analysis of our data enables us to state some other findings: a) The $k$ values are considerably smaller in virtually all cases for $\lambda_{0} 546 \mathrm{~nm}$ than for $\lambda_{0} 436$. $b$ ) With the exception of sample A, the $k$ values are considerably smaller for the pair of angles $30 / 45$ than for $45 / 60$ (for $\lambda_{0} 546 \mathrm{~nm}$ the difference is not sufficiently conclusive, since the $k$ values are very small in this case - with the exception of $k_{b}$, which, however, shows that the above statement is justified). c) The $k_{\mathrm{v}}$ values are in all cases substantially smaller than $k_{\mathrm{h}}$; the experimental data (Table VII) confirm that $k_{\mathrm{u}} \approx \frac{1}{2}\left(k_{\mathrm{v}}+k_{\mathrm{h}}\right)$. d) The $k_{\mathrm{h}}$ values are generally very high - such a great concentration dependence seems rather unexpected. If the slope $k$ was the only measure for the accuracy of determination of $\lim _{x \rightarrow 0} \zeta$, then measurements carried out in vertically polarized light, $\lambda_{0} 546 \mathrm{~nm}$, and at the pair of angles $30 / 45$ can be considered optimum; and measurements in horizontally polarized light, $\lambda_{0} 436 \mathrm{~nm}$, and at the pair of angles $45 / 60$ are then the least advantageous. The actual situation, however, is slightly more complicated: the accuracy of determination is also governed by some other factors, both experimental and theoretical (for instance, the presence of large foreign particles, geometric parameters of the apparatus and cell, steepness of the corresponding scattering function etc.), which must always be weighed individually and complexly.

Returning to the results presented in Table V, we can say that the forward angle dissymmetry method reflects physical facts, although in a limited way, and rather in tendencies than in detail. It can be expected, in accordance with the Mie theory, that for a perfectly monodisperse system this method will provide identical dissymmetry values (and thus particle sizes), be it that they were obtained at various wavelengths, various pairs of angles, or various polarization of light. Small and regular

Table VII
Relative Slopes, $k$, of the Function $\zeta=\mathrm{f}(x)$

| Pair of angles | $\lambda_{0}, \mathrm{~nm}$ | $k_{u}$ | $k_{\mathrm{v}}$ | $k_{\text {h }}$ | $\frac{k_{\mathrm{v}}+k_{\mathrm{h}}}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sample A ( $\left.L_{\text {em }}=206 \mathrm{~nm}\right)$ |  |  |  |  |  |
| 30/45 | 436 | -0.22 | -0.16 | -0.29 | $-0.23$ |
|  |  | $-0.17$ | $-0.13$ | $-0.35$ | $-0.24$ |
|  | 546 | $-0.07$ | $-0.07$ | $-0.18$ | -0.12 |
|  |  | $-0.07$ | $-0.07$ | $-0.18$ | -0.12 |
| 45/60 | 436 | $-0.15$ | $-0.10$ | $-0.44$ | -0.27 |
|  |  | $-0.15$ | -0.14 | -0.37 | -0.25 |
|  | 546 | $-0.08$ | $-0.04$ | $-0.25$ | -0.14 |
|  |  | -0.09 | $-0.06$ | $-0.20$ | $-0.13$ |
| Sample B ( $L_{\text {em }}=247 \mathrm{~nm}$ ) |  |  |  |  |  |
| 30/45 | 436 | -0.15 | $-0.12$ | $-0.18$ | $-0.15$ |
|  |  | $-0.16$ | $-0.09$ | $-0.20$ | $-0.14$ |
|  | 546 | $-0.07$ | -0.04 | -0.08 | -0.06 |
|  |  | -0.05 | -0.04 | -0.06 | $-0.05$ |
| 45/60 | 436 | -0.22 | -0.16 | -0.37 | -0.26 |
|  |  | -0.22 | $-0.16$ | $-0.37$ | -0.26 |
|  | 546 | -0.06 | $-0.04$ | $-0.14$ | $-0.09$ |
|  |  | -0.05 | -0.05 | $-0.16$ | $-0.10$ |
| Sample C ( $L_{\text {em }}=265 \mathrm{~nm}$ ) |  |  |  |  |  |
| 30/45 | 436 | - | - | $-0.43$ | - |
|  |  | $-0.34$ | -0.26 | $-0.60$ | -0.43 |
|  | 546 | -0.17 | -0.12 | -0.20 | -0.16 . |
|  |  | $-0.13$ | -0.05 | -0.21 | $-0.13$ |
| 45/60 | 436 | - | -0.44 | - | - |
|  |  | $-0.57$ | - | $-0.83$ | (-0.63) |
|  | 546 | - | -0.14 | - | - |
|  |  | -0.15 | -0.16 | $-0.38$ | $-0.27$ |
| Sample D ( $L_{\text {em }}=289 \mathrm{~nm}$ ) |  |  |  |  |  |
| 30/45 | 436 | -0.28 | -0.18 | $-0.33$ | -0.26 |
|  |  | -0.26 | $-0.20$ | $-0.36$ | -0.28 |
|  | 546 | -0.07 | $-0.04$ | -0.09 | -0.06 |
|  |  | -0.08 | -0.06 | -0.10 | $-0.08$ |
| 45/60 | 436 | -0.48 | -0.45 | - | - |
|  |  | -0.57 | -0.39 | -0.74 | -0.56 |
|  | 546 | $-0.11$ | -0.06 | - | - |
|  |  | $-0.12$ | $-0.09$ | -0.25 | -0.17 |

Owing to the different actual values of the relative concentration $x$ of the individual samples A-D, only slopes $k$ corresponding to a given sample can be compared with each other (and not those of different samples). Meaning of quantities: $k_{u}=\partial \zeta_{u} / \partial x ; k_{v}=\partial \zeta_{v} / \partial x ; k_{\mathrm{h}}=\partial \zeta_{\mathrm{h}} / \partial x$; $\zeta$ forward angle dissymmetry; $\lambda_{0}$ light wavelength (in vacuo).
deviations of the $L$ values from the $L_{\mathrm{om}}$ value of samples B to D indicate a low degree of polydispersity of their particles in accordance with the results of electron microscopic measurements (Table $V$ ). In the case of these, almost monodisperse systems the forward angle dissymmetry method yields comparatively good results, even if the concentration of particles in the system is unknown. As soon as the particle size has been determined, their concentration, too, can be measured easily: the experimentally determined reduced intensity value (best for $\theta=90^{\circ}$ ) is compared with the tabular data on specific intensity for the respective value of $L$; the constant of proportionality represents the concentration in question.

It is justified to expect, with respect to the character of the scattering functions, that the polydisperse samples will exhibit considerable deviations, both between the values of $L$ and $L_{e m}$ and between themselves. Such behaviour was in fact observed with sample A, which moreover shows a clear tendency toward aggregation of particles (judging by the electron microscopic pictures). In the case of polydisperse samples, therefore, the $L$ values obtained for a longer wavelength, $\lambda_{0}$, and for the pair of smaller angles will in general be clearly higher; this finding also corroborates the observations made by Maron and Pierce ${ }^{3}$. All the $L$ values established for the sample A, too, were much higher than $L_{\mathrm{em}}$ (in accordance with the assumption of the secondary aggregation of particles). The fact that also smaller values of $L$ than average ${ }^{3}$ were found could be explained, if we remember that the resulting dissymmetry, $\zeta$, is not a sum of the contributions of the components $x_{j} \zeta_{j}$, but that $\zeta=\sum x_{j}\left(i_{\theta_{1}}\right)_{j}$ : $: \sum x_{\mathrm{j}}\left(i_{\theta_{2}}\right)_{\mathrm{j}}$; here, it will be necessary to wait for a detailed analysis of behaviour of the scattering functions.

For a preliminary evaluation of polydispersity, the quotients defined in Table VI would be of advantage. The values of both the angular and wavelength quationts for samples B and D are close to unity; for the polydisperse sample A they lie between 1.20 and $1-25$. So long as the theoretical correlation function between the quotient values and the distribution function are not known, they can be used in those polydisperse systems only which have been tested by means of another, more laborious method (such as electron microscopy, sedimentation analysis, etc.)

The author is indebted to Dr Z. Pelzbauer and Dr F. Lednicky for electron microscopy measurements and to Miss $N$. Ningerová and Mrs M. Jakešová for technical assistance.

## REFERENCES

1. Sedláček B.: This Journal 32, 1374 (1967); 32, 1595 (1967).
2. Heller W., Pangonis W. J., Economou N. A.: J. Chem. Phys. 34, 971 (1961).
3. Maron S. H., Pierce P. E.: J. Polymer Sci. C 27, 183 (1969).
4. Pangonis W. J., Heller W.: Angular Scattering Functions for Spherical Particles. Wayne State University Press, Detroit 1960.

Translated by L. Kopecká.


[^0]:    * Part XXI: This Journal 35, 1695 (1970).

[^1]:     an.

